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Modeling of Cascaded Coplanar Waveguide
Discontinuities by the Mode-Matching Approach

Rolf Schmidt and Peter Russer, Fellow, IEEE

Abstract— Cascaded coplanar waveguide discontinuities with
transverse dimensions in the order of some micrometers are
analyzed by the mode-matching and generalized scattering ma-
trix method. This approach permits a full-wave analysis of the
electromagnetic field also in the metallic regions. Compared with
full-wave analysis assuming perfect conductors and a subsequent
loss computation based on the surface impedance model the
accuracy is considerably enhanced.

The mode-matching method is revisited in the context of
a network representation of discontinuities. The implications
of Tellegen’s general network theorem on the mode-matching
method, particularly on the testing functions, are investigated.
Furthermore, the mode-matching method is related to the equiv-
alence principle applied to discontinuites and to the continuity
condtion of voltage and current of quasi-TEM waves in the static
approximation.

I. INTRODUCTION

N MONOLITHIC MICROWAVE integrated circuit design

coplanar waveguide (CPW) structures meet with growing
interest. In recent publications the influence of the metalliza-
tion thickness on the scattering characteristics of cascaded
CPW discontinuities is investigated [1], [6]. The results con-
firm that the finite metallization thickness may significantly
affect the electrical characteristics of CPW circuits. How-
ever, these approaches are based on field modelling assuming
perfect conductors, which is only valid for waveguides with
transverse dimensions considerably larger than the skin depth.
In CPW’s with strip width and metallization thickness in the
skin depth’s order of magnitude conductor loss influences the
propagation characteristics of transmission lines [2]-[5] and
hence the scattering behavior of cascaded discontinuities. A
full-wave analysis is required considering also the electromag-
netic field inside the conductor. The present analysis is based
on the generalized scattering matrix method and the mode-
matching method. This approach permits a fully self-consistent
description of the conductor losses. The eigenmodes of the
waveguides as well as the scattering behavior of cascaded
discontinuities are computed by this method.

Modes are matched at boundaries by applying the method
of moments [8] to the continuity condition of the tangential
field components. Truncating the complete set of eigenmodes
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numerical results depend on the set of testing functions used
in the method of moments. Usually the modal magnetic field
vector functions of one side of the discontinuity are employed
for testing the continuity of the tangential electric field and
the electric field vector functions of the other side are used for
enforcing the continuity of the tangential magnetic field [1],
[51, [10]. According to the experimentally verified boundary
enlargement/reduction concept in [10] one of these two sets
can be specified, which gives the fastest convergence of
the solution. This set is rigorously justified in [11] by an
investigation of the matching equations with regard to their
linear independence.

In this paper the mode-matching method is revisited by
considering Tellegen’s general network theorem [12] to the
equivalent network representation of the discontinuity. Using
the above stated testing functions it is proven that Tellegen’s
theorem applies to the generalized voltages and currents of
the modes irrespective of the number of modes retained in
the mode-matching approach. The coupling of the eigenmodes
can thus be modelled by a multiport which contains only a
connection network including ideal transformers. This property
implies the symmetry and orthogonality of the generalized
scattering matrix and in lossless waveguides also the con-
servation of complex power across the discontinuity. The
difficulty in choosing the appropiate set of testing functions
out of the two nominated is rigorously resolved by relating the
mode-matching method to the reaction concept [13] applied
to equivalent current densities in the discontinuity plane.
From the assumption of a not vanishing electric equivalent
current on the conductors the set of testing functions can
be specified, which permits this condition of the equivalent
electric current. These testing functions correspond to those
stated by [11]. A further justification of these testing functions
is yielded from the condition that enforcing the continuity
condition of the tangential field components by the single
mode-matching approach must lead to the continuity of the
well-defined voltage and current in the static approxima-
tion.

II. METHOD OF ANALYSIS

We consider the cascaded waveguide discontinuity in Fig. 1,
which is enclosed inside a rectangular box with perfect elec-
tric conducting walls. The cascaded waveguide discontinuity
consists of three waveguide sections. The location of the
discontinuity plane between two waveguides ¢ and § is denoted
by z,,. The electromagnetic fields in the waveguide ¢ can be
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Fig. 1. Cascaded coplanar waveguide discontinuities enclosed in rectangular
box with perfect conducting walls.

expanded in terms of the respective eigenmodes. Suppose e( )
and h§,3 are the normalized transverse electric and magnetic
modal field vector functions, respectively. Taking N* eigen-
modes into account the transverse fields in the waveguide ¢
may be expressed by

B - ZJZT (a0
O = Z\/% (a9(c

) +80(@))el(@,y), - )

— @)k ) @

where a @ and be) are the wave amplitudes of the nth
eigenmode in waveguide ¢ and Z‘(,‘l,)n = (ngﬁ)n)_l are real
positive normalization constants. The following orthogonality
relation holds for the normalized modal field vector function
over the waveguide cross-section S*

// e x b m, dS = bmp 3)
SZ

n. is the unit vector in z-direction. Introducing generalized
voltages V,S') and currents I,(f) the field expansion (1), (2) can
be written as

EX (2,9, 2) ZV(‘) ()efs) (z,v), “
HY (2,y,7) ZI(” (2)hiy) (z, ). ®)

A. Generalized Network Representation

We introduce an equivalent circuit representation of the
discontinuity where the discontinuity itself is described by
a connection multiport. In this multiport, which may contain
ideal transformers, energy is neither stored nor dissipated. Each
port k represents an eigenmode of the waveguides ¢ and j,
respectively. The number of ports of the connection circuit is
equal to N = N* + N7, which is the number of considered
eigenmodes on both sides of the discontinuity. At any time ¢
Tellegen’s theorem [12] is fulfilled by the port voltages v (t)
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and currents 7x(t) of the connection circuit

N
> (tik(t) = 0. ©6)
k=1

The voltages v (t) and currents i},(¢) may also represent
excitations of the circuit different from the excitation given by
vi(t) and iz (t). If we define the vectors

1740 7@
= [V(j)] and I'= [Iu)} )

where V® and I™ are column vectors with the complex
elements V") (2,,) and JiQ (2z,,), we obtain the following two
relations for the complex voltages and currents of the external
ports of the network

vk ()i (t) =

™=

k=1

vi.T =0, ®)
vi. (I =o. ©)

V and I’ are vectors in the complex N-dimensional vector
space CV. The set of all potential voltage and current vectors
at the external ports span the subspaces Kgl and Kﬁv . The
dimensions N7 and N3 of these two subspaces depend on the
internal structure of the connection network. Since (9) holds
KN ! and IKN2 are orthogonal subspaces of CV. From (8) it
follows that the voltage subset KN * and the set of conjugate
current vectors I, denoted by Kﬁz, constitute also orthogonal
subspaces of .

B. Generalized Scattering Matrix

The coupling between the eigenmodes in the discontinuity
plane can be characterized by a generalized scattering matrix
S:

b= Sa. (10)
Properties of the generalized scattering matrix (GSM) of
the equivalent multiport can be established from the two
statements (8) and (9) of Tellegen’s theorem. From (8), which
implies the conservation of the self-reaction [f E; x H, -
n, dA across the discontinuity, the following two properties
can be found

s=8"  SsTs=1 (11)
where 1 is the unit matrix. The GSM of a multiport represent-
ing a waveguide discontinuity is symmetric and orthogonal.
From (9) the unitary of the scattering matrix S can be proven

ssf=1 (12)

where ““1** denotes the hermitian conjugate matrix.

C. Mode-Matching at Waveguide Discontinuities

The elements of the GSM can be determined by enforcing
the continuity of the tangential field components across the
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step discontinuity. This condition can be written as

an X e )—ZVn(j)nzxe%]),

n=1

Z IOn, x A = — Z I, x B9,
n=1 n=1

In order to solve (13), (14) by the method of moments [14],
an inner product between two vector functions u(x,y) and
v(x,y) is introduced and defined as

= // ulv dS.
S

Testing the continuity of the tangential electric and magnetic
field components by N, vector functions w2 and N, vector

13)

(14)

(15)

functions wZ | respectively, the two following matrix equations
arise
W%)V(i) = W%)V(j), (16)
W = wPr® 17

with the matrices [W( Nmn = (wE, n xel) and [W%)]mn =
(wH n, x x h{® )) Since we need N independent equations to
describe uniquely a N-port [18], the total number of required
testing functions is

Ne+ Np = N. (18)

Substituting the generalized voltages and currents by wave
amplitudes the GSM can be easily derived from the above ma-
trix equations. In order to condense these equations, we define

the matrices Wg = [W(l Wg)] and Wg = [WEL}),W&})]-
Hence we get
WgV =0, 19)
WyI* =0. (20)

The set of vectors V satisfying the N, equations of (19)
constitute the N3 = N — N, -dimensional subspace K(}h of the
complex vector space C and the set of solution vectors I of
the N}, equations (20) constitute a No = N — Np-dimensional
subspace IKJI\E. Due to (18) the sum of the dimensions of
these two vector spaces is N. Representing the coupling of
the eigenmodes by an equivalent multiport Tellegen’s theorem
must apply to these subspaces. Due to (8) subspaces KVI and
Kﬁz must be orthogonal. Since the sum of their dimensions is
N both subspaces are complementary with respect to C. By
utilizing finite dimensional linear algebra it can be shown that
the subspace spanned by the complex conjugate row vectors of
the matrix W g is also complementary to Ké\fl [17]. Hence, any
current vector I™ may be expressed as a linear combination of
the row vectors of the matrix W% in the form I* = W1 a. In
the same way the relation V' = W%/3 must be valid. Inserting
these two linear combinations into (19) and (20) we obtain
WeW%h3 = 0 and Wi, Wha = 0. Since these equations
must hold for any « and any g, it follows

WpWy = 1)
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Taking the orthogonality relation (3) into account it can be
easily shown that the condition (21) can be fulfilled by the-
two sets (A) and (B) of testing functions

(A: wE =" N, =N,

wl =el* N, =N, (22)
B): wE =nl*, N.=N,

wl =el)* N, = N (23)

Using testing functions from either set (A) or (B) the
complex statement (8) of Tellegen’s theorem will be satisfied
for both sets. For discontinuities between waveguides with
different apertures, however, only one set is appropiate ac-
cording to [11], since the other set yields linearly dependent
equations. Specifically, for waveguide discontinuities which
are characterized by the aperture relation SJ C S the choice
of testing functions used in the field matching must be set
(A). The aperture S¢ is hereby defined as the set of points
of the waveguide cross-section S;, which are not located
in the conductor regions. The aperture relation between the
waveguides 1 and 2 in Fig. 1 can thus be denoted by S} C S2.
In the following we shall give a further justification of this
criterion. The equivalence principle allows the separation of
the discontinuity problem into a pair of equivalent problems
[16]. In each problem, the equivalent electric and magnetic
current densities, J and M, must be equal to the discontinuities
in the tangential field, from the actual field in one waveguide to
zero in the other. The original problem is the superposition of
these two equivalent configurations. The current densities are
not yet known. They are determined by expanding them into a
series of appropiate functions. The expansion coefficients can
be found from the condition that the surface currents produce
null fields in one waveguide in each problem. It can be shown
easily that using n, X hgf) as the expansion functions for J
and egf ) n,, for M the follwing current densities are obtained

N* N?
Ay T=) In. xhY), M=3 Vel xn..
n=1 n=1

24

Using the Lorentz reciprocity theorem the generalized volt-

ages V) can be deduced from M and the currents I from
J
Vn(L) :"<h’§;)aM>a (25)
I9) = (e, ). (26)

These equations are identical with the (16) and (17), if the
testing functions of set (A) are applied in the mode-matching
method. Because of this analogy the expansion (24) is also
denoted by (A). In the same way the current expansion

N7 N
B): J=) IPVn.xhy, M=> Vel xn, 27)
n=1 n=1
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leads to (16) and (17), if testing functions from set (B) are
employed. This correspondence between the sets of testing
functions and the equivalent current densities in the discon-
tinuity plane yields a rigorous justification for the above
stated choice of testing functions. Specifically, matching fields
between waveguides ¢ = 1 and j = 2 in Fig. 1 we have to use
the testing functions of set (B), because only the equivalent
electric current density J is not vanishing on the conductors.
This selection of testing functions can also be justificated
by the requirement that imposing the continuity condition of
the tangential field components of quasi-TEM waves by the
mode-matching method must lead to the continuity of the
well-defined voltage and current in the static approximation.

D. Matching of Quasi-TEM Waves

In the static approximation the transverse modal electric
and magnetic fields can be expressed by the gradients of
skalar potentials ®® and ¥ respectively. Taking only the
quasi-TEM waves into account, the continuity condition of
the tangential fields (13) tested with the functions from set
(A) can be written as

v // v,0® . v, 0% x n, dS

Se

=y // vV, 80 . v, 0@ x n, dS.  (28)

Making use of the vector identity V,® - (V¥ xn,) = V-
[®(V,VU x n,)] and the two-dimensional divergence theorem,
both surface integrals can be converted into contour integrals
along the surface of the inner and outer conductor. Since the
electric potential is constant on these boundaries ®() and &)
may be extracted from both integrals, respectively. Provided
the magnetic potential ¥(*) is defined on the inner and outer
conductor contours of both waveguides, which is the case for
Si c S¢, the contour integral of the magnetic fields can be
canceled in the continuity condition of the tangential electric
fields. Expressing the electric potential difference by a line
integeral, (28) can be rewritten as

V@ / e . dl =V / el dl.
: c?

This equation implies the continuity of the voltage. In the
same way the continuity condition of the magnetic fields (14),
tested by the same set (A) of functions, can be transformed
into the following equation, which expresses the continuity of

the current
9 / B . dl = —19 / R - dl.
i G

(29)

(30)

h

Note that the derivations of (29) and (30) for discontinuities
with $7 C S¢ only hold, if the testing functions of set (A)
are used in the mode-matching method. Correspondingly, for
discontinuities with St C SJ the testing functions of set (B)
must be taken in order to yield the continuity of the voltage
and current in the static approximation.
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E. Calculation of the Eigenmodes

In Fig. 2 a coplanar waveguide (CPW) with finite metal-
lization thickness inside a rectangular box with perfect electric
conducting walls is depicted. Due to the symmetry with respect
to the plane z = 0, only half of the structure has to be
considered. The cross section is divided into three layers. In
each of the layers [ the modal field vector functions es D and
h(i D of the n-th eigenmode may be expanded into a sum
of LSE, and LSH, partial wave components. These waves
can be determined in closed-form expressions [4]. Taking N
partial waves of layer [ into account, we get

“ﬂ

[ il 7
n, x D (z,y) = ZV( )(y)n xeil(x), @)
v=1
~
i ~ =il (3,0
ny x B0 (z,y) = S 10 (wny x By (2) - (32)
v=1

where 2%5" and ’—"Sn)/ are the vector-valued expansion functions
for the electric and magnetic field respectively. The field
expansions in two neighboring layers ! and %k are matched
by applying the method of moments to the tangentlal field

continuity conditions ’

ny x (e —eliP)y =0, n, x (R — hg’k)) =0 (33)

at their horizontal boundary. Hence we define another inner

product
a
(u,v) :/ ulv dr.
0 .
S0

o andh

(34

Defining e* as the expansion functions of

—nv

‘the electromagnetic field which propagates in the opposite

z-direction the following orthogonality relations hold

i 3 T ivl
((EE'ZVB,L) y Ny X h’ElV)> W(Suua (35)
(@) my X o) = B (36)

Hence the coupling of the partial waves of neighboring
layers can be analyzed by the same formalism applied to wave-
guide discontinuities. Specifically, a generalized scattering
matrix associated to an equivalent multiport can be introduced,
which characterizes the coupling of the partial waves. If we
truncate the field expansions in the layers to a finite number of
partial waves it can be shown in the same way as in section '

that Tellegen’s theorem apply to the generalized voltages V( D
and currents I Ewl). In this case the tangential electric field is

tested by a number of N. functions W, and the magnetic
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field by a number of N, functions @}, . This set (A) of testing
functions is given by

@A) @2 =@, N.=N,

I —nu i
@ =@, Ny=TN,. (37)

Again there exists also another set (B) of testing functions,
given by

NP
(B) ’U)f :(h—np.) ? Ne :sz
B % = vl
@l =(&")), Np=N, (38)

In the same way as for the waveguide discontinuity cor-
responding equivalent current densities J, and M, can be
introduced to describe the continuity conditions between the
layers [ and k& of the waveguide 7

ny

N, ‘
@): To=Y To'n, x B
v=1

k

M, = %Vs;k)égf,;k) x my, (39)
l/_=k1
B Tu= 3 10n, < ELY,
l/_:kl
M= 76D x . (40)

v=1

Due to this analogy testing functions of set (A) must be
chosen in the field matching procedures between the layers
[ =1 and k = 2, because the not vanishing electric current
on the surface of metallization layer can be modelled only by
this set. Accordingly the field matching between the layers
I =2 and k = 3 is performed using the testing functions of
set (B). By combining all continuity equations and boundary
conditions at the horizontal waveguide walls at y = —d
and y = t + h a sufficient number of equations is obtained
to determine the complex propagation constants k, and the
unknown partial wave amplitudes of the fundamental and
higher-order modes.

III. NUMERICAL RESULTS

A computer program has been developped to deal with cas-
caded discontinuities of waveguides, which may be modelled
by an arbitrary composition of layers enclosed in a rectangular
box with perfect conducting walls. First we calculated the
propagation characteristics of a CPW with a metallization
thickness which is not large in comparison with the skin
depth. The CPW was measured by R. B. Marks from the
NIST. The experimental data are taken from [7]. In Figs. 3
and 4 the frequency dependence of the propagation and
attenuation constant is plotted and compared with the results
of a full-wave field analysis assuming perfect conductors. In
this case conductor loss is computed by modelling the field
inside the conductor by a surface impedance and a surface
impedance matrix description. In the surface impedance matrix
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Er,eff

10° 10!
Frequency [GHz]

field analysis assumling lossy conductors
— — ~ - field analysls assuming perfect conductors

¢ ¢ ¢ ¢ measured

Fig. 3. Effective diclectric constant of CPW (metallization: w = 71 pm,
s = 49 pym;t = 1.61 pm,oc = 3107 S/m; subtrate: d = 500 pm,
€& = 12.9.tan 6§ = 3. 10~%).

o

o

-

alpha / [dB/mm] #1072

Frequency [GHz]

field analysis assuming lossy conductors

- ——~— perfsct conductors (loss cale. by surface Impedance)

— = = - perfect conductors (loss calc. by surface Impedance matrix)
o ¢ oo measured {7]

Fig. 4. Attentuation of CPW (same data as in Fig. 3).

description the coupling of the fields on top and bottom of the
metallization layer is taken into account. In Fig. 3 the relative
effective permittivity e, . exhibits a negative slope over the
whole frequency band. This behavior can only be modelled by
field analysis taking into account also the metallic losses.

The scattering characteristics of cascaded waveguide dis-
continuities are calculated by combining successively the
GSM’s of the waveguide step discontinuities and of the
waveguide transmissions lines between the junctions [15].
By using this approach higher-order mode interactions be-
tween junctions are included. We calculated the reflection
coefficient of cascaded CPW step discontinuities using the
same parameters as Alessandri et al. [6], who considered
the metallization layer a perfect conductor and verified their
results by experiments. The results of both calculations are
shown in Fig. 5. As can be seen, the results agree excellently,
thus confirming the validity of the mode-matching approach
described above.

Fig. 6 shows the dependence of the fundamental mode
scattering parameters of cascaded CPW discontinuites on
the distance L between the discontinuities for perfect and
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Fig. 5. Comparison of computed return loss of double step discontinuity in
CPW. (Feeding line: w1 = ws = 0.5 mm, 81 = s3 = 0.2 mm. Central line:
wo = 0.2 mm, wy = 0.35 mm. Distance between steps: L = 4.36 mm.
Substrate: d = 0.635 mm, ¢, = 9.9. Metallization thickness ¢ = 35 um.
Housing: WR28.)

o
13

[s11]
& °
arg{S11} / [deg]

1
°
8

<
-150
1]

10 15 20
Frequency / [GHz]

lossy eonductors
- -~ — perfect conductors
— — — - perfect conducters (loss calc, by surface impedance)

Fig. 6. S11 of cascaded CPW discontinuity (metallization: wl = w3
15 pmaw2 = 20 pm, s1 = 82 = 10 pum,s2 = 5 um,tl
2 = 3 = 02 pumo = 2 - 107 S/m; substrate: d
200 pm,e, = 12.9,tan § = 1-10™%; frequency: f = 10 GHz).

non-perfect conductors. The attenuation of the fundamental
eigenmode of the inner waveguide b with a perfect met-
allization layer is hereby approximated by the two surface
impedance models. The periodic variation of the scattering
parameter S1; in Fig. 6 indicates the existence of a standing
wave between the two cascaded discontinuities [1]. Fig. 6
shows that the resonant behavior in a CPW with transverse
dimensions, which are not large compared to the skin depth,
can be correctly modelled only by a self-consistent description
of the metallic losses.

Figs. 7 and 8 show the scattering characteristics of a
35-70 Q quarter-wave transformer over the frequency for
perfect and non-perfect conductors. Fig. 7 also shows the
results, if we assume perfect conductors in the field analysis
and compute the attentuation of the waveguides by the
surface impedance approximation. The various results differ
significantly. The deviation ig¢ due to the following two
effects: Metallic loss influences the propagation constant of
the quarter-wave matching waveguide and thus the frequency
of the reflection minimum. As Fig. 9 shows, metallic loss
affects also the scattering characteristics of the waveguide
transitions and hence of the composite structure.
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Fig. 7. Reflection coefficient of A/4 transformer (substrate: e, = 12.9,
thickness: 200 pm. metallization thickness: 3 um. waveguide 35 € :
w = 20 pm,s = 5 pm. waveguide 50 Q: w = 15 pm.s = 10 um,
! = 3.104 mm. waveguide 70 : w = 8 pm, s = 17 pm.)
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Fig. 8. Transmission coefficient of A/4 transformer (same data as in Fig. 7).
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Fig. 9. Scattering parameters of 35-50 ! waveguide transition (data from

Fig. 7).

In Fig. 10 the transmission coefficient of a low-pass filter
of 11th order is plotted over the frequency band. In such a
composite structure the above stated deviations accumulate
leading to the strong difference in the scattering characteristics
of the filter.

The computer programm is also able to handle multilayer
waveguides, which allow very compact passive filter structures
[9]. Fig. 12 shows such a structure, which constitutes a low-
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— — - perfect conductors

Fig. 10. ' |S21| of low-pass filter of 11th order (subtrate: e, = 12.9,

thickness = 500 pm,tan 6 = 1 . 107%. metallization thickness
t = 10 pum, distance between ground metallization layers
w+2s = 42 pm, o = 2107 S/m).
1.0 1.0
.8 .8
_ 6 .E_
- &
n )
Lo .
.2 .2
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5 10 15 20 25 30 35 40
Frequency / [GHz]
measurad
— — — — caleulated
Fig. 11. Scattering parameters of multilayer waveguide structure (w =

100 pm, s = 128 pum, metallization thickness: 1 ym,o = 1.7 - 107 S/m,
! =3.25 mm,dl = 2.5 um,d2 = 400 um, ¢, = 12.95).

. ol

—j»l ‘-‘}i_wwas

o2 -

ground metallization Polyimid

Fig. 12. Multilayer waveguide structure.

impedance microstip line between two coplanar waveguides.
The reflection and transmission coefficients are calculated by
our full-wave analysis. In Fig. 11 our results are compared
with measured data, we received from Prof. Menzel, Univer-
sity of Ulm.

IV. CONCLUSION

A full-wave analysis has been performed to calculate the
scattering characteristics of cascaded coplanar waveguide dis-
continuities. It was found that the transmission and reflection
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coefficients are 'strongly affected by metallic losses if the
line geometries of the waveguide structure are in the order
of the skin depth. Excellent agreement with experiments and
computations of other field analysis methods is demonstrated.
It is shown that waveguide discontinuities analyzed by the
mode-matching approach can be modelled by an equiva-
lent multiport, if proper testing functions are used in the
enforcement of the continuity condition of the tangential
field components across the discontinuity. The mode-matching
equations are related to the expansions of the equivalent cur-
rent densities in the discontinuity plane and to the continuity
condition of the well-defined voltage and currents of quasi-
TEM waves in the static approximation. This correspondence
is only valid for one testing function set, thus presenting a
rigorous justification of this set.

ACKNOWLEDGMENT

The authors would like to thank Prof. Menzel for providing
the experimental data on the multilayer structure.

REFERENCES

(1] T. W. Huang and T. Itoh, “The influence of metallization thickness
on the characteristics of cascaded junction discontinuities of shielded
coplanar type transmission line,” IEEE Trans. Microwave Theory Tech.,
vol. 41, pp. 693-697, Apr. 1993.

[2] W. Heinrich, “Full-wave analysis of conductor losses on MMIC trans-
mission lines,” IEEE Trans. Microwave Theory Tech., vol. 38, pp.
1468-1472, Oct. 1990.

[3] Y. C.- Shih and M. Maher, “Characterization of conductor-backed
coplanar waveguides using accurate on-wafer measurement techniques,”
in 1990 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1129-1132,

[4] R. Schmidt and P. Russer, “Full-wave analysis of coplanar waveguide
discontinuities by partial wave synthesis,” in 10th Anniversary ACES
Conference, Monterey, 1994, pp. 576-583.

[5] K. Wu, R. Vahldieck, J. L. Fikart, and H. Minkus, ‘“The influence of finite
conductor thickness and conductivity on fundamental and higher-order
modes in miniature hybrid MIC’s (MHMIC’s) and MMIC’s,” IEEE
Trans. Microwave Theory Tech., vol. 41, pp. 421430, Mar. 1993.

[6] F. Alessandri, G. Baini, M. Mongiardo, and R. Sorrentino, “A 3-
D mode matching technique for the efficient analysis of coplanar
MMIC discontinuities with finite metallization thickness,” IEEE Trans.
Microwave Theory Tech., vol. 41, pp. 1625-1629, Sept. 1993.

[71 W. Heinrich, ‘“Beitrige zur Simulation monolithisch integrierter
Hochstfrequenzschaltungen,”  Fortschrittsberichte VDI, Rethe 21:
Elektrotechnik, no. 136, 1993,

[8] R. F. Harrington, Field Compuration by Moments Methods.
Robert E. Krieger Publishing, 1982. .

[9] W. Menzel, H. Schumacher, W. Schwab, and X. Zhang, “Compact

multilayer filter structures for coplanar MMIC’s,” IEEE Microwave and

Guide Wave Lett., vol. 2, pp. 497-498, Dec. 1992.

Q. Xu, K. J. Webb, and R. Mittra, “Study of modal solution procedures

for microstrip step discontinuities,” IEEE Trans. Microwave Theory

Tech., vol. 37, pp. 381~386, Feb. 1989.

G. V. Eleftheriades, A. S. Omar, L. P. B. Katehi, and G. M. Rebeiz,

“Some important properties of waveguide junction generalized scattering

matrices in the context of the mode matching technique,” IEEE Trans.

Microwave Theory Tech., vol. 42, pp. 1896-1903, Oct. 1994,

P. Penfield, Jr., R. Spence, and S. Duinker, Tellegen’s Theorem and

Electrical Networks, Research Monograph no. 58. Cambridge, MA

and London, England: M.LT. Press.

R. F. Harrington, Time Harmonic Electromagnetic Fields.

NY: McGraw-Hill, 1961.

J. Kessler, R. Dill, and P. Russer, “Field theory investigation of high-T.

superconducting coplanar waveguide transmission lines and resonators,”

IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1566-1574, Sept.

1991.

T. S. Chu and T. Itoh, “Generalized scattering matrix method for analysis

of cascaded and offset microstrip step discontinuities,” IEEE Trans.

Microwave Theory Tech., vol. MTT-34, pp. 280-284, Feb. 1986.

Malabar:

[10]

[11]

[12]

[13] New York,

[14]

[15]



SCHMIDT AND RUSSER: MODELING OF CASCADED COPLANAR WAVEGUIDE DISCONTINUITIES

[16] D. N. Zuckermann and P. Diament, “Rank reduction of ill-conditioned
matrices in- waveguide junction problems,” IEEE Trans. Microwave
Theory Tech., vol. MTT-25, pp. 613-619, July 1977.

[17] J. P. Keener, Principles of Applied Mathematics.
Addison-Wesley, 1988.

Reading, MA:

[18] J. B. Murdoch, Network Theory. New York, NY: McGraw-Hill, 1970.

Rolf Schmidt was born in Augsburg, Germany,
in 1966. He received the DiplIng. degree in elec-
. trical engineering from the Technische Universitit
Miinchen, Germany, in 1991. Since then, he has
been studying toward the Dr.Ing. degree in electrical
engineering at the Lehrstuhl fiir Hochfrequenztech-
nik at the Technische Universitit Miinchen. '
His research interests are field theory and numer-
ical computation of electromagnetic fields applied
to MMIC structures.

2917

Peter Russer (SM’81-F’94) was born in Vienna,
Austria, in 1943. He received the Dipl.Ing. degree
in 1967 and the Dr.Tech. degree in 1971, both in
electrical engineering and both from the Technische
Universitit in Vienna, Austria. ’

From 1968 to 1971, he was an Assistant
Professor at the Technische Universitit in Vienna.
In 1971 he joined the Research Institute of AEG-
Telefunken in Ulm, where he worked on fiber-optic
communication, broadband solid-state electronic
circuits, statistical noise analysis of microwave
circuits, laser modulation, and fiber-optic gyroscopes. Since 1981 he has held
the chair of Hochfrequenztechnik at the Technische Universitit Miinchen. In
1990 he was Visiting Professor at the University of Ottawa. From October
1992 to March 1995 he was director of the Ferdinand-Braun-Institut fiir
Hochstfrequenztechnik in Berlin. His current research interests are modeling
and computer-aided design of integrated microwave and millimeterwave
circuits, methods for electromagnetic field computation, and statistical noise
analysis of microwave circuits, He is the author of more than 200 scientific
papers in these areas.

Dr. Russer is a Fellow of the IEEE and member of the German
Informationstechnische Gesellschaft and the Austrian and German Physical
Societies. In 1979, he was corecipient of the NTG award.



